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ABSTRACT

Given a connected space X, we consider the effect of Quillen’s plus con-
struction on the homotopy groups of X in terms of its Postnikov decom-
position. Specifically, using universal properties of the fibration sequence
AX = X = X%, we explain the contribution of 7, X to m™mX7t, ‘rrn+1X+
and m, AX, mp41AX explicitly in terms of the low dimensional homol-
ogy of mp X regarded as a module over m3 X. Key ingredients developed
here for this purpose are universal II-central fibrations and a theory of
universal central extensions of modules, analogous to universal central
extensions of perfect groups.
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Introduction

Quillen’s plus construction (cf. [10]), applied to a space X, yields a universal map
n: X — X7, which is characterized by the fact that it quotients out the maxi-
mal perfect subgroup of m; X and induces isomorphisms in all homology theories
(including homology with twisted coefficients). In general, a map between con-
nected spaces satisfies this homological condition if and only if its homotopy fiber
is acyclic; see [11] and compare [5]. We denote the homotopy fiber of n: X — X+
by AX.

Understanding the map m.: 7. X — m. X1 is helpful in studying the effect
of homological localization functors on homotopy groups (see 4.5) and in higher
algebraic K-theory. Such understanding was obtained early on in low dimensions
and, except for special cases, this has remained the extent of our knowledge. With
the following result we clarify completely the contribution of 7, X to m, Xt and
Tn1 X T, for each n > 2.

THEOREM A: Let X be a connected CW complex. Applying the plus construc-
tion to the Postnikov section K(m,X,n) — P,X — P,_1 X (n > 2) yields the
commutative diagram of fibrations whose properties are formulated below:

(FD) F———> K(m,X,n) T
AP, X P.X (P X)t

L |

APy 1 X —— P 1 X —— (Pn—lX)+

The fibers F and ® are (n — 1)-connected, and their lowest non-vanishing
homotopy groups fit into the natural commutative diagram of exact sequences in
which every vertical arrow is an isomorphism.

(UCE) H (é, 7rnX)>——_> I[é] ®6 T X a X HO(é; 71'n)()

T

1P T F T X T ®

Moreover, there is an epimorphism
2@ 11 F —3 Hop1 FEH(G I[G] 95 ma X).

Here G is the universal central extension of the maximal perfect subgroup G of
mX, and I [é] is the augmentation ideal of the integral group ring of G.



Vol. 132, 2002 PLUS CONSTRUCTION 111

ON THE BACKGROUND OF THEOREM A. OQur approach to Theorem A is guided
by properties of the homotopy fibration sequence of #:

OX+tAx — X Lx+

As noted in [9, 0.1.iv], the acyclic space AX is just the acyclization of X, as
defined by Dror in [3] (see also [4]). The following two theorems express the
universal properties of the plus construction and acyclization in a form which
lends itself better to an interpretation in terms of homotopy groups.

THEOREM B ([9, 7.7]): The fibration QX+ “AX - X is [-central, in the sense
that all Whitehead products [i.«, 8] vanish, where & € mpQX™* and 8 € 1, AX,
pg 21

THEOREM C: The fibration QX+ — AX — X Is initial amongst II-central
fibrations in the following sense: given a solid diagram of Il-central fibrations

QX+ —> AX —> X

RN
F E——X

in which G := im(q) is the maximal perfect subgroup of mX, dotted maps
exist making the diagram commute. Moreover, the dotted maps are unique up
to vertical homotopy.

To get a feel for the implications of Theorems B and C, consider first the
following well known exact sequence

71'2X+ 71'1AX ﬂ'lX 7T1X+
HzG/ G/

in which m1 AX is the universal central extension of G.

This sequence can be nicely explained as a consequence of Theorems B and C,
using results on the universal central extension of a perfect group, due to Milnor
[8, Sect. 5] and Kervaire [6].

As another consequence of Theorems B and C, we obtain Theorem A. It de-
pends upon a new concept from algebra, namely the universal central extension
of a perfect module:
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THEOREM D: IfG is a 2-acyclic group (that is, H,(G;Z) = 0 = H2(G;Z)), then
every G-module M fits into an exact sequence

Hy(G; M)>—— I[G] ®¢ M—#>M———»H0(G;M)

whose terms have the following properties:
(i) im(p) = I[G].M is the unique maximal perfect submodule of M; i.e.,
1[G). im(p) = im(p).
(i) Hi(G; M) — I[G] ®¢ M — im(u) is a central extension of im(yu) (ie.,
G acts trivially on H1(G; M)), and it is initial amongst all such central
extensions.

ORGANIZATION OF THE PAPER. Section 1 supplies some facts on II-central
fibrations, leading up to Theorem C. Section 2 develops material on universal
central extensions of a module over a group ring, leading up to Theorem D. In
Section 3 we prove Theorem A, and in Section 4 we compute the acyclic Postnikov
invariants of AX (cf. [3]) in terms of the ordinary Postnikov invariants of X.

ACKNOWLEDGEMENT: We thank the referees of this paper for their constructive
comments.

1. II-central fibrations with perfect target

Here we develop properties of Il-central fibrations, leading up to Theorem C
which, in turn, guides our approach towards analyzing the effect of the plus
construction on homotopy groups. We assume throughout that spaces, maps
and homotopies are pointed. Spaces are assumed to be path connected, except
possibly those arising as homotopy fibers.

1.1 Definition [9, Sect. 7]: A fibration sequence F' —4E - Bis called II-central
if all Whitehead products [i.c, 8] vanish for any o € m,F and 8 € nE with
pg2 1

Given a map ¢: W = Y, we refer to G := im(q) < m Y as its target in homo-
topy dimension 1. We say that ¢ has perfect target (in homotopy dimension
1) if G is a perfect group.

1.2 LEMMA: Let F — W-3Y be a Il-central fibration, such that q has perfect
target G < m,Y, and suppose f: X — Y is a map for which G’ := (7, f)"'G is a
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perfect subgroup of my X. Then the pullback fibration

F—-*W’-—q’—>X

, pull
| A

F—*W—‘?Y

is M-central, and ¢’ has perfect target G'.

Proof: The pullback of a II-central fibration is again II-central by [9, 7.6]. An
elementary argument shows that im(71q’) = G’, which is perfect by assumption.
|

1.3 Example: For every connected CW-space X, the sequence QX+ — AX -5 X
is a Il-central fibration, and c¢ has perfect target equal to the maximal perfect
subgroup of 71 X.

1.4 Definition: A Il-central fibration F — W -5 X such that q has perfect target

G is universal if, under conditions (i) and (ii) below, for every solid diagram

F—sW—2>X

i lf
v \
Fl———>W1—E—>Y

there exists a morphism f of fibrations, unique up to homotopy, which makes the
diagram commute. Diagram conditions:
(i) The bottom row is a II-central fibration such that ¢; has perfect target G1;
(ii) f«(G), the image of G under m, f, is contained in Gy.

1.5 THEOREM: For every connected CW-space X, the Il-central fibration
QX+ —» AX-°3X is universal, and ¢ has target G (=the maximal perfect sub-
group of my X ).

Proof: According to Definition 1.4, suppose we are given a solid diagram

QX+t —> AX — X
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We use obstruction theory to obtain the required morphism of fibrations. At the
level of fundamental groups we have the diagram of central extensions

HyG mAX =G
v v
ker(miq1) mWi G

with universal top row. Thus there exists a lift f2 (AX)2 — W from the 2-
skeleton of AX to W), and its restriction to (AX)! is homotopically unique. The
existence and homotopical uniqueness of f follow because AX is acyclic and the
action of m;Y on w,F} is trivial. [ |

Theorem C follows as a special case of Theorem 1.5.

2. Universal central extensions of perfect G-modules

In this section we develop the concept of perfect modules and their central exten-
sions, and prove Theorem D. We assume some background material on perfect
groups and their universal central extensions from [8, Sect. 5].

Given a group G and a left G-module M, we often use the exact “multiplication
sequence”

(MS) Hy(G; M) 1 ©g M —5> M — Hy(G; M)

which comes from applying Tor%[G](—, M) to I — Z[G] - Z. Here Z|G] is the
integral group ring of G and I is its augmentation ideal. All tensor products are
over Z[G], and p is the multiplication map.

2.1 Definition: For n > 1, a group G is called n-acyclic if Hx(G;Z) = G for
1<k<n.

Thus 1-acyclic groups are known as perfect groups. 2-acyclic groups are some-
times called “superperfect”.

2.2 Definition: Let G be a group and n > 0. A G-module M is called n-acyclic
if He(G;M)=0for0 <k < mn.

In analogy with the group theoretic terminology, we sometimes refer to a 0-
acyclic G-module as a “perfect G-module”.
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2.3 LEMMA: A group G is n-acyclic if and only if its augmentation ideal I is an
(n — 1)-acyclic G-module.

Proof: Apply H.(G;—) to I — Z[G] — Z. |

2.4 COROLLARY: A group G is l-acyclic if and only if the multiplication map
w: I®gI — I is an epimorphism. G is 2-acyclic if and only if i1 is an isomorphism.

Proof: Apply Lemma 2.3 to (MS), using M = I. [ |

2.5 COROLLARY: For n = 1,2 let G be an n-acyclic group, and let M be an
arbitrary G-module; then the G-module I ®¢ M is (n — 1)-acyclic.

Proof: The multiplication map p' for M’ = I ® M is given by the composite

106 (196 M) ~2>Toc D) oc MY 1 og M.

Thus the claim follows from Corollary 2.4. |

2.6 COROLLARY: If G is an n-acyclic group and A is an abelian group with
trivial G-action, then Tor%[G](I, A)=0,for0<k<n-1.

Proof: Use the long exact sequence obtained by applying Tor%[G](-—,A) to
I— Z|G] - Z. i

2.7 Definition: A colocalizing functor on a category C is a functor C: C — C,
together with a natural transformation e: C — Id; making the diagram below
commutative.

CoC—>C
EoCiE is
C——U
2.8 THEOREM: For a 2-acyclic group G, the functor E := I ®¢ —, together with
the natural transformation y: E — 1d defined by

multiply
pa: I®a M — M,

is a colocalizing functor from the category Z[G]-M od of left G-modules onto the
category A1Z[G]-M od of 1-acyclic G-modules.

Proof: E takes values in A4,Z[G}-Mod by Corollary 2.5. The colocalizing
properties of F require that
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(1) the diagram
Epm
EEM = EM
MEMlE lﬂM
EM e M

be commutative and natural in M; and
(2) the designated arrows in this diagram be isomorphisms.
(1) follows from basic properties of the tensor product. For (2), use Corollary
2.4 to deduce that pgas is an isomorphism. To see that Fuy = I ®¢ par is an
isomorphism, too, we break the sequence (MS) up into short exact sequences:

Hi(G; M) — I Q¢ MESPM  and PM — M — Hy(G; M).

Apply Tor%[G](I , —) to these sequences, and use Corollary 2.4 to see that I ®¢ pam
is the composite of the two isomorphisms

I8¢ (o M)5I®g PM and I®gPM-=3I®¢ M.
The claim follows. [ |
2.9 Definition: The center of a G-module N is the submodule of elements on

which G acts trivially. A central extension of a G-module M is a short exact
sequence of G-modules A — N — M so that A maps into the center of N.

In analogy with universal central extensions of perfect groups we prove

2.10 THEOREM: Given a 2-acyclic group G, a central extension A »— MM
of G-modules is initial amongst all central extensions of M if and only if M is
l-acyclic.

Proof: Assume M is l-acyclic. In the diagram below, we assume the solid part
of the front face is given.

R

AT

0 M EM
]
|
|
, > M
|
Y

EN EM

S
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The solid part of the back face results from applying the colocalizing functor E.
We find EA = 0 = EB by Corollary 2.4. Thus the back rows are exact, being the
ends of Tor? M
makes the right hand back square commute. This yields a map f: M- N making

the vertical square in the center, as well as the right front face, commute. To see

[G](I , —)-long exact sequences. So there is a map M — EN which

that it is unique, assume g: M — N is another such map. Then go (f —g): M -
M is the zero map, so (f — g) lifts to B. This implies that (f — g) = 0, because
Hy(G; M) =0 and G acts trivially on B. Thus f = g, implying that the sequence
is initial amongst all central extensions of M.

To see the converse, we invoke Theorem (2.11) which, of course, does not
depend on the part of (2.10) we are going to prove now: Part (ii) shows that M
is 0-acyclic. Part (i) implies that M = EM which is 1-acyclic. |

We call a sequence of G-modules, as in Theorem 2.10, the universal central
extension of M.

2.11 THEOREM: Given a 2-acyclic group G, the following hold:
(i) For every 0-acyclic G-module M,

Hi(G; M) — [®c M =EM —» M

is a universal central extension of M.
(ii) A G-module M has a universal central extension if and only if M is 0-
acyclic; compare [8, 5.7].

Proof: (i) The given sequence is (MS), taking into account that M is 0-acyclic.
EM is 1-acyclic by Corollary 2.5. So the claim follows from Theorem 2.10.

(ii) Suppose M is not 0O-acyclic, and A — N — M is a universal central
extension of M. Then M, and hence N, have Hy(G; M) # 0 as a G-trivial
quotient. Therefore there are at least two distinct morphisms from the assumed
universal central extension to the central extension

Ho(G; M)>——> Hy(G; M) d M — M,

a contradiction. |
We remark that [7, Thm. 1] can be regarded as a precursor of Theorem 2.11.

Proof of Theorem D: (i) The module I ®; M is l-acyclic by Corollary 2.5.
So PM = im(y) is O-acyclic by 2.12. It is a maximal 0-acyclic submodule of M
because any module NV with PM < N < M yields a quotient N/PM < Hy(G; M)
with trivial G-action. However, N/PM is again perfect by Proposition 2.12
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below. So N = PM. That PM is the unique maximal perfect submodule of M
also follows from Proposition 2.12.
(ii) follows from Theorem 2.10. i

We conclude this section by formulating some closure properties of the classes
of n-acyclic modules:

2.12 ProPosSITION: For any group G, and n > 0, the class of perfect G-modules
is closed under quotients and arbitrary colimits.

Proof:  The natural isomorphism H,(G; @,y M) = @, He(G; M) shows
that the class of perfect G-modules is closed under direct sums. Further, any
quotient M of a perfect G-module N is again perfect because 0 = Hy(G; N) —»

2.13 ProPoOSITION: Given a 2-acyclic group G, the class of 1-acyclic G-modules
is closed under extensions and arbitrary colimits.

Proof: If M' = M — M" is an extension of G-modules with M’ and M" 1-
acyclic, then inspection of the associated long exact sequence in homology shows
that M is 1-acyclic as well. By Corollary 2.5, ] ® s — takes values in the class of
1-acyclic G-modules. Moreover, I ®; — commutes with arbitrary colimits. [ |

3. Proof of Theorem A

By passing to the appropriate covering space of X, if necessary, we can assume
that 7, X is perfect. So X+ and each Postnikov section (P, X)* (n > 1) are
simply connected.

3.1 LEMMA: Forn > 2, ® is (n — 1)-connected.
Proof: This follows from the fact that, for k < n,

0 = Hi(Poo1 X, PaX;2) S Hi (Pt X))V, (PoX)HZ). 0

3.2 LEMMA: For n > 2, F is (n — 1)-connected.

Proof: F is at least (n — 2)-connected because K(7,X,n) and ® are (n — 1)-
connected. We must show that 7,_1F = 0 as well. First of all, we have an
epimorphism 7,® — n,_1F. So m,_1F is abelian, and the Hurewicz map
Tp—1F —gi)Hn_lF is an isomorphism even for n = 2. Next, by applying the



Vol. 132, 2002 PLUS CONSTRUCTION 119

Serre spectral sequence to the fibration AP, X — AP, _1X, we see that H,_1F
is a l-acyclic G-module. Furthermore, the commutative diagram

Tp1Q® ———— 7, | F

l |

T 1 PpX)t —— 1 1APX

tells us that G acts trivially on the image of 7, 1F — m,_1AP,X. But the
class of 0-acyclic modules is closed under quotients by Proposition 2.12. So this
image is trivial, and we have an epimorphism 9: 7, AP, _1X —» 7,_1F. On the
other hand, G acts trivially on AP, _1X for k > n, because we have isomor-
phisms mxQ(Py_1X)* 7, AP,_1X in the I-central fibration Q(P,_;X)* —
AP, _1X — P,_1X. Now 0 is a morphism of é-modules, implying that G acts
trivially on the 1-acyclic G-module Ttn_1F. Therefore m,_1F = 0, as claimed.
1

Thus we have established the first part of Theorem A. We now turn to diagram
(UCE) of the Theorem and its properties:

The bottom row comes from the fibration F' — K (7, X,n) — ®, using Lemma
3.2. The terms m,+1P and m, P are trivial G-modules and m+1P is contained in
the center of m,F. Further, n,F = H,F is seen to be a l-acyclic é—module, by
using the Serre spectral sequence of the fibration F — AP, X — AP,_;X. Thus
N := im(7, F — 1, X) = I[G).7, X = im(y) is the maximal perfect submodule
of 7, X; see Theorem D(i). From Theorem 2.10 we see that 7,41® — 7, F -» N
is the universal central extension of N. So the vertical arrows on the left are iso-
morphisms by Theorem D(ii). The vertical arrow on the right is an isomorphism
by the Five Lemma.

As to mp41 F, it is a trivial G-module because it fits into the exact sequence
Tny2APp 1 X = 71 F — mp 1 AP, X, where G acts trivially on the outside
terms. The Hurewicz map mp 1 £ — Hp 1 F is onto and is a G-module map.
Thus G acts trivially on H, 1 F as well. Now the Serre spectral sequence yields
an isomorphism

Hy(Gi I ®5 mnX)-3Ho(G; Hnyr F) 2 Hyi i F,
which proves the claim, and completes the proof of Theorem A. 1

3.3 Remark: By chasing the diagram of homotopy groups coming from the fibra-
tion diagram (FD) one can deduce further that the maximal perfect submodule
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of 7, X is always contained in ker(m, P, X — 7,(PaX)1). Moreover, the two
modules are equal exactly when 7, 41(P,X)t = mp41(Pn-1X)™ is onto. 1

4. The acyclic Postnikov tower of AX

Already in the early 1970’s Dror showed how to use the acyclic Postnikov tower
(3] to analyze an acyclic space Z. The acyclic Postnikov n-stage of Z is simply
the acyclization AP,Z of the usual Postnikov section. The acyclic Postnikov
n-stage need not have trivial homotopy groups above dimension n. Instead, the
only requirement is that the fundamental group act trivially on these higher
homotopy groups.

When passing from an (n—1)-stage Z,, to an n-stage, one splices into m, Z,_1
a l-acyclic m; Z-module o, and there is a corresponding “acyclic Postnikov in-
variant” Kk, € H"*Y(Z,_1; M). In addition, in dimensions greater than n, one
splices into m,Z,,_; certain 7 Z-modules with trivial action.

In general, starting with an arbitrary space X, Dror’s acyclic Postnikov tower
of AX has AP,AX as its n-th acyclic Postnikov stage. In Theorem A, we were
working with a tower whose n-th stage is AP, X. Below, we establish explicitly
a natural equivalence between these towers. With the aid of Theorem A, we
express the acyclic Postnikov invariants of AX in terms of the ordinary Postnikov
invariants of X.

4.1 LEMMA: Let X be a connected CW-space. Applying successively the appro-
priate functors to the map AX — X yields the commutative cube

AP, AX P,AX
AP, X ll P, X
AP, _1AX P,_1AX
Un—1 \
AP, 1 X P, X

whose left hand face is a homotopy equivalence of acyclic Postnikov towers.

Proof: To see that each u, is a homotopy equivalence, we argue as follows.
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Applying A to the commutative diagram

AX ——> X AAX — > AX
l l yields l l
P, AX ——> P, X AP, AX —— AP, X

For k < m, the right hand square induces mg-isomorphisms because the maps on
the top and the sides do. This follows from Lemma 3.2. By [3, 3.4], u, is a
homotopy equivalence. |

4.2 COROLLARY: The functors AP, A and AP, are naturally equivalent.

In order to determine the acyclic Postnikov invariants of AX, we require the
following cohomological recognition tool for acyclic spaces:

4.3 LEMMA: A connected CW-space X is acyclic if and only if its fundamental
group G is 2-acyclic and, for every G-module M, the morphism p: I @ M — M
induces isomorphisms

e H(X; I Q¢ M)-§+HT(X;M) forr > 2.

Proof: TIf X is acyclic, then G is 2-acyclic; see [3, 4.1]. To see that u. is an
isomorphism, we split the sequence (MS) up into short exact sequences

H(GM)—I®¢ M —» PM and PM»— M — Hy(G; M),

where PM denotes the maximal perfect submodule of M; see Theorem D. We
then get coefficient sequences of the form

HT (X H ((GM) = HT (X196 M) ——> H™ (X;PM) —————> H™HU( X H, (G:M))

HT Y(X;Ho(G;M)) ————— H™(X;PM) —— H"(X;M)—H" (X;Ho{G;M))

The coeflicient map u. appears as a composite in the middle of the diagram. If
X is acyclic, then the end terms of both rows are 0. So p. is an isomorphism.

Now suppose G is 2-acyclic and p, is an isomorphism for all M and r >
2. With M = Z[G] we have H,(G; M) = 0 and, consequently, isomorphisms
H™(X; )5 HT(X; PM) for all > 2. So H™(X; PM)—H"(X; Z[G)) are iso-
morphisms for 7 > 2 as well. We have H!(X;Z) = HY(G;Z) = 0. But then
H"(X;Z)=0 for r > 1. So X is acyclic. ]
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4.4 PROPOSITION: Let X be a connected CW-space with n-th k-invariant k,
in H"*Y(P,_X;m,X). Then the n-th acyclic k-invariant of AX (see [3]) is
ptocn_1(ky):

H™ (P X5 1 X) S H M (AP X 1 X) A H P (AP 1 X T @6 7 X).

Here ¢ .1: AP,_1X — P,_1X is the colocalizing map, G is myAX, I is the
augmentation ideal of Z[G], and p~!
4.3.

is the coefficient isomorphism of Lemma

Sketch of Proof: Consider the fibration Y — AP,_;X obtained from the pro-
posed acyclic k-invariant. There is a morphism of fibrations ¢: AP, X — Y over
AP, _1X. With the methods supplied in the previous discussion it is possible to
show that

(1) mr¢ is an isomorphism for 1 < r < n;

(2} m(AY —Y) is an isomorphism for 1 < r < n;

(3) the unique lift f: AP, X — AY of ¢ is a weak homotopy equivalence.
This implies the claim. n

4.5 Remark: In many situations our work can be used to clarify the effect on
homotopy groups of plus constructions and localizations with respect to more
general homology theories h. For example, let h be connective. Note first that
X — X" (the h-homology localization of X) factors through X — X*. If X* is
simply connected, then the canonical map X " — X" is a homotopy equivalence;
see [9, 1.7]. Now X — X" agrees with X — X +HR for a suitable ring R of the
form Zp or P,cp Z/p, where P is a set of primes; see 1, 1.1] and compare [12,
Sect. 4].
Consequently, the four localization maps

X Xh X Xth x5 XHR  x o xtHHR

all agree and factor as X ——X+5(X+)#R_ The map 7,v is completely under-
stood by [2], and here we provide new information on m,u.
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