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ABSTRACT 

Given a connected  space X,  we consider the  effect of  Quil len 's  plus  con- 

s t ruc t ion  on the  homot opy  groups  of X in t e rms  of its Postnikov decom- 

position. Specifically, us ing universal  propert ies  of  the  f ibrat ion sequence  

A X  --~ X -~ X +, we explain  the  cont r ibut ion  of 7rnX to ~rnX + , ~rn+ l X + 

and  ~ n A X ,  7rn+lAX explicitly in t e rms  of the  low dimens ional  homol-  

ogy of 7rnX regarded as a module  over ~rlX. Key  ingredients  developed 

here for this  purpose  are universal  H-central  f ibrat ions and  a theory  of 

universal  central  ex tens ions  of modules ,  analogous to universal  central  

ex tens ions  of perfect  groups.  

* R e s e a r c h  p a r t i a l l y  s u p p o r t e d  by  N S E R C  of  C a n a d a .  
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Introduct ion  

Quillen's plus construction (cf. [10]), applied to a space X, yields a universal map 

~/: X -~ X +, which is characterized by the fact that it quotients out the maxi- 

mal perfect subgroup of rqX and induces isomorphisms in all homology theories 

(including homology with twisted coefficients). In general, a map between con- 

nected spaces satisfies this homological condition if and only if its homotopy fiber 

is acyclic; see [11] and compare [5]. We denote the homotopy fiber of r/: X --+ X + 

by A X .  

Understanding the map rr,~: rr, X --+ rr,X + is helpful in studying the effect 

of homological localization functors on homotopy groups (see 4.5) and in higher 

algebraic K-theory. Such understanding was obtained early on in low dimensions 

and, except for special cases, this has remained the extent of our knowledge. With 

the following result we clarify completely the contribution of rrnX to rrnX + and 

71"n+l X+, for each n > 2. 

THEOREM A: Let X be a connected C W  complex. Applying the plus construc- 

tion to the Postnikov section K(rrnX , n) -+ P a X  -+ P n - l X  (n >_ 2) yields the 

commutative diagram of fibrations whose properties are formulated below: 

(FD) F > K(~r~X,n)  > 4) 

A P e X  , P a X  " (PAX) + 

AP~_IX , P,~_IX ~ (p~_~X)+ 

The fibers F and �9 are (n - 1)-connected, and their lowest non-vanishing 

homotopy groups fit into the natural commutative diagram of  exact sequences in 

which every vertical arrow is an isomorphism. 

(UCE) HI(G;Tr~X)> > I [G] |  ~ " zr,~X ~ Ho(G;zcnX) 

7rn+l(I)> > 7rnF > 7raN ~ Irfn ff~ 

Moreover, there is an epimorphism 

7rn+2r -)Trn+lF )) H ~ + I F + = - H 2 ( ; I [ G ] |  

Here G is the universal central extension of  the maximal perfect subgroup G of  

~rlX, and I[G] is the augmentation ideal of the integral group ring of  G. 
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ON THE BACKGROUND OF THEOREM A. Our approach to Theorem A is guided 

by properties of the homotopy fibration sequence of ~: 

~X+-2-+AX ~ X ~-~X +. 

As noted in [9, 0.1.iv], the acyclic space A X  is just the acyclization of X, as 

defined by Dror in [3] (see also [4]). The following two theorems express the 

universal properties of the plus construction and acyelization in a form which 

lends itself bet ter  to an interpretation in terms of homotopy groups. 

THEOREM B ([9, 7.7]): The fibration f ~ X + ~ A X  -+ X is H-central, in the sense 

that all Whitehead products [i.a,/3] vanish, where a 6 7Tp~X + and/3 E 7rqAX, 

p,q>_ 1. 

THEOREM C: The fibration ~ X  + -4 A X  -+ X is initial amongst H-central 

fibrations in the following sense: given a solid diagram of H-central fibrations 

~X + 

F 

~ A X  �9 X 

u 

� 9  

in which G := im(q) is the maximal perfect subgroup of l hX ,  dotted maps 

exist making the diagram commute. Moreover, the dotted maps are unique up 

to vertical homotopy. 

To get a feel for the implications of Theorems B and C, consider first the 

following well known exact sequence 

r + �9 7 f l A X  �9 ~ h X  > 7 h X  + 

in which ~hAX is the universal central extension of G. 

This sequence can be nicely explained as a consequence of Theorems B and C, 

using results on the universal central extension of a perfect group, due to Milnor 

[8, Sect. 5] and Kervaire [6]. 

As another consequence of Theorems B and C, we obtain Theorem A. It de- 

pends upon a new concept from algebra, namely the universal central extension 

of a perfect module: 
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THEOREM D: I fG is a 2-acyclic group (that is, HI(G; Z) = 0 = H2(G; Z)), then 

every G-module M fits into an exact sequence 

Hi(G; M ) )  , I[C] Na M ~' ) M ~ Ho(G; M) 

whose terms have the following properties: 

(i) im(#) = I[G].M is the unique maximal perfect submodule of M; i.e., 

I[G]. im(p) = im(#). 

(ii) Hi(G;  M) ~-~ I[G] | M --~ im(p) is a central extension of im(#) (i.e., 

G acts trivially on Hi(G; M)),  and it is initial amongst all such central 

extensions. 

ORGANIZATION OF THE PAPER. Section 1 supplies some facts on H-central 

fibrations, leading up to Theorem C. Section 2 develops material on universal 

central extensions of a module over a group ring, leading up to Theorem D. In 

Section 3 we prove Theorem A, and in Section 4 we compute the acyclic Postnikov 

invariants of A X  (cf. [3]) in terms of the ordinary Postnikov invariants of X. 

ACKNOWLEDGEMENT: We thank the referees of this paper for their constructive 

comments. 

1. H- c e n t r a l  f i b r a t i ons  w i t h  perfect target 

Here we develop properties of H-central fibrations, leading up to Theorem C 

which, in turn, guides our approach towards analyzing the effect of the plus 

construction on homotopy groups. We assume throughout that spaces, maps 

and homotopies are pointed. Spaces are assumed to be path connected, except 

possibly those arising as homotopy fibers. 

1.1 Definition [9, Sect. 7]: A fibration sequence F i >E -+ B is called H-cen t r a l  

if all Whitehead products [i,~,/3] vanish for any ~ E ~rpF and /~ E 7rqE with 

p,q>_ 1. 

Given a map q: W -+ Y, we refer to G := im(q) < 7fly as its t a r g e t  in homo- 

topy dimension 1. We say that q has p e r f e c t  t a r g e t  (in homotopy dimension 

1) if G is a perfect group. 

1.2 LEMMA: Let F --4 W q >Y be a H-central fibration, such that q has perfect 

target G < ~rlY, and suppose f: X -+ Y is a map for which G' := (~r l f ) - lG is a 
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perfect subgroup of 7rlX. Then the pullback [ibration 

it qt 
F > W' > X  

f,[ pull If  back 
F i �9 W ~ T - > Y  

is H-central, and q' has perfect target G'. 

Proof The pullback of a H-central fibration is again H-central by [9, 7.6]. An 

elementary argument shows that  im(Trlq') = G', which is perfect by assumption. 

1 

1.3 Example: For every connected CW-space X, the sequence ftX+ --+ A X - - ~ X  

is a H-central fibration, and c has perfect target equal to the maximal perfect 

subgroup of 7rlX. 

1.4 Definition: A H-central fibration F --+ W ? >X such that  q has perfect target 

G is un iversa l  if, under conditions (i) and (ii) below, for every solid diagram 

q 
F > W  ~ X  

v ~ 
F1 > Wt ~ Y 

there exists a morphism f of fibrations, unique up to homotopy, which makes the 

diagram commute. Diagram conditions: 

(i) The bottom row is a H-central fibration such that ql has perfect target G1; 

(ii) f,(G), the image of G under 7rlf, is contained in G1. 

1.5 THEOREM: For every connected CW-space X,  the H-central fibration 

f iX + --+ A X c  > X is universal, and c has target G (: the  maxima/perfect sub- 

group of 7rlX). 

Proof According to Definition 1.4, suppose we are given a solid diagram 

f~X + 

V 
F1 

> A X  C > X  

y', f 
V 

�9 W I ~ Y  



114 D. BLANC AND G. PESCHKE Isr, J. Math. 

We use obstruction theory to obtain the required morphism of fibrations. At the 

level of fundamental groups we have the diagram of central extensions 

H2G> 

v 
ker (zr lql ) > 

> Z r l A X  

v 

> ~IW1 

~ 1 c  G 

>> G1 

with universal top row. Thus there exists a lift ) ' 2 : (AX)2  ~ W1 from the 2- 

skeleton of A X  to W1, and its restriction to ( A X )  1 is homotopically unique. The 

existence and homotopical uniqueness of ] follow because A X  is acyclic and the 

action of 7fly on ~r,F1 is trivial. | 

Theorem C follows as a special case of Theorem 1.5. 

2. U n i v e r s a l  c e n t r a l  e x t e n s i o n s  of  p e r f e c t  G - m o d u l e s  

In this section we develop the concept of perfect modules and their central exten- 

sions, and prove Theorem D. We assume some background material  on perfect 

groups and their universal central extensions from [8, Sect. 5]. 

Given a group G and a left G-module M, we often use the exact "multiplication 

sequence" 

(MS) HI(G;M)> > I |  " > M ~ Ho(G;M)  

which comes from applying TorX[G]( - , _  M) to [ ~ Z[G] --~ Z. Here Z[G] is the 

integral group ring of G and I is its augmentation ideal. All tensor products are 

over ZIG], and p is the multiplication map. 

2.1 Definition: For n >_ I, a group G is called n-acycl ic  if Hk(G; Z) = 0 for 

l < k < n .  

Thus 1-acyclic groups are known as perfect groups. 2-acyclic groups are some- 

times called "superperfect". 

2.2 Definition: Let G be a group and n > 0. A G-module M is called n-acyclic 
if H k ( G ; M )  = 0 for 0 < k < n. 

In analogy with the group theoretic terminology, we sometimes refer to a 0- 

acyclie G-module as a "perfect G-module".  
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2.3 LEMMA: A group C is n-aeyclic i f  and only i f  its augmentation ideal I is an 

(n - 1)-acyclic C-module. 

Proof: Apply H . ( G ; - )  to I ,--, Z[G] ~ Z. m 

2.4 COROLLARY: A group G is 1-acyclic i f  and only i f  the multiplication map 

it: I |  I --+ I is an epimorphism. G is 2-acyclic i f  and only i fp  is an isomorphism. 

Proof: Apply Lemma 2.3 to (MS), using M = I. | 

2.5 COROLLARY: For n = 1, 2 let C be an n-acyclic group, and let M be an 

arbitrary G-module; then the G-module I | M is (n - 1)-acyclic. 

Proof'. The multiplication map #' for M '  = I |  M is given by the composite 

I |  (I  |  M) -~ ~ (I  |  I) |  M ,,OM I | M. 

Thus the claim follows from Corollary 2.4. | 

2.6 COROLLARY: I f  C is an n-acyclic group and A is an abelian group with 

trivial G-action, then TorkZ[a](I, A) = 0, for 0 < k < n - 1. 

Proo~ Use the long exact sequence obtained by applying Tor,Z[a](-,A) to 

I ~ Z[a] -~ Z. . 

2.7Definition: A colocal iz ing  f u n c t o r  on a category C is a functor C: C --+ C, 

together with a natural transformation c: C -+ Idc making the diagram below 

commutative. 
Cs 

C o C ~ C  

C ~ > I d  

2.8 THEOREM: For a 2-acyclic group G, the functor E := I |  - ,  together with 

the natural transformation #: E -~ Id defined by 

multiply 
PM: I | M > M, 

is a colocalizing functor from the category Z[G]-.Ad od of  left G-modules onto the 

category A17/,[G]-.Ad od of 1-acyclic G-modules. 

Proot~ E takes values in A1Z[G]-A4 od by Corollary 2.5. The colocalizing 

properties of E require that 
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(1) the diagram 

E E M  ~ E M  

E M  > M #M 

be commutative and natural in M; and 

(2) the designated arrows in this diagram be isomorphisms. 

(1) follows from basic properties of the tensor product. For (2), use Corollary 

2.4 to deduce that ~EM is an isomorphism. To see that E # M  = I | #M is an 

isomorphism, too, we break the sequence (MS) up into short exact sequences: 

HI(G;M)~--~ I |  and P M  ~-~ M - ~  Ho(G;M) .  

Apply TorZ_[a](I, - )  to these sequences, and use Corollary 2.4 to see that I |  

is the composite of the two isomorphisms 

I Qa (I  Qa M )  ~-'>I Qa P M  and I Qa P M  ~'->I QG M. 

The claim follows. 1 

2.9 Definition: The c e n t e r  of a G-module N is the submodule of elements on 

which G acts trivially. A c e n t r a l  e x t e n s i o n  of a G-module M is a short exact 

sequence of G-modules A ~ N -~ M so that A maps into the center of N. 

In analogy with universal central extensions of perfect groups we prove 

2.10 THEOREM: Given a 2-acyclic group G, a central extension A ~-* M --~ M 

of  G-modules is initial amongst all central extensions of  M i f  and only i f  M is 

1-acyclic. 

Proof." Assume M is 1-acyclic. In the diagram below, we assume the solid part 

of the front face is given. 

0 

/ 
A> 

u 

0 - -  

/ 
B> 

~ M  / ,  
I 

I 

> M  I 

I 

- - .  �9 E N  w 

> N  q 

> E M  

/ 
~ M  

> E M  

/ 
= ~ M  



Vol. 132, 2002 PLUS CONSTRUCTION 117 

The solid part of the back face results from applying the colocalizing functor E.  

We find E A  = 0 = E B  by Corollary 2.4. Thus the back rows are exact, being the 

ends of Tor,Z[a](I,-)-long exact sequences. So there is a map M --+ E N  which 

makes the right hand back square commute. This yields a map f :  M --+ N making 

the vertical square in the center, as well as the right front face, commute. To see 

that it is unique, assume g: M --+ N is another such map. Then qo ( f - g ) :  M --+ 

M is the zero map, so ( f  - g) lifts to B. This implies that ( f  - g) = 0, because 

Ho(G; M) = 0 and G acts trivially on B. Thus f = g, implying that the sequence 

is initial amongst all central extensions of M. 

To see the converse, we invoke Theorem (2.11) which, of course, does not 

depend on the part of (2.10) we are going to prove now: Part  (ii) shows that  M 

is 0-acyclic. Part  (i) implies that M ~ E M  which is 1-acyclic. | 

We call a sequence of G-modules, as in Theorem 2.10, the un ive r sa l  c e n t r a l  

extens ion  of M. 

2.11 THEOREM: Given a 2-acyclic group G, the following hold: 

(i) For every O-acyclic G-module M, 

H~(G; M)  ~ I Qa M = E M  -~ M 

is a universal central extension of M. 

(ii) A G-module M has a universal central extension if  and only i f  M is 0- 

acyclic; compare [8, 5.7]. 

Proof  (i) The given sequence is (MS), taking into account that M is 0-acyclic. 

E M  is 1-acyclic by Corollary 2.5. So the claim follows from Theorem 2.10. 

(ii) Suppose M is not 0-acyclic, and A ~-~ N --~ M is a universal central 

extension of M. Then M, and hence N, have H0(G; M) r 0 as a G-trivial 

quotient. Therefore there are at least two distinct morphisms from the assumed 

universal central extension to the central extension 

Ho(G; M) )  - Ho(G; M) �9 M = M, 

a contradiction. | 

We remark that [7, Thm. 1] can be regarded as a precursor of Theorem 2.11. 

Proof of Theorem D: (i) The module I |  M is 1-acyclic by Corollary 2.5. 

So P M  = im(#) is 0-acyclic by 2.12. It is a maximal 0-acyclic submodule of M 

because any module N with P M  < N < M yields a quotient N / P M  < H0(G; M) 

with trivial G-action. However, N / P M  is again perfect by Proposition 2.12 
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below. So N = P M .  That  P M  is the unique maximal perfect submodule of M 

also follows from Proposition 2.12. 

(ii) follows from Theorem 2.10. | 

We conclude this section by formulating some closure properties of the classes 

of n-acyclic modules: 

2.12 PROPOSITION: For any group G, and n >_ O, the class of perfect G-modules 

is closed under quotients and arbitrary colimits. 

Proof." The natural  isomorphism H. (G;  ~ e A  M~) ~ ~ e A  H. (G;  Mx) shows 

that  the class of perfect G-modules is closed under direct sums. Further, any 

quotient M of a perfect G-module N is again perfect because 0 = H0(G; N)  --~ 

Ho(G;M). | 

2.13 PROPOSITION: Given a 2-acyclic group G, the class of l-acyclic G-modules 

is closed under extensions and arbitrary colimits. 

Proof: If M '  ~-~ M --~ M "  is an extension of G-modules with M '  and M "  1- 

acyclic, then inspection of the associated long exact sequence in homology shows 

that  M is 1-acyclic as well. By Corollary 2.5, I |  - takes values in the class of 

1-acyclic G-modules. Moreover, I |  - commutes with arbi trary colimits. | 

3. P r o o f  o f  T h e o r e m  A 

By passing to the appropriate covering space of X,  if necessary, we can assume 

that  ~rlX is perfect. So X + and each Postnikov section (PnX)+ (n > 1) are 

simply connected. 

3.1 LEMMA: For n > 2, 4) is (n - 1)-connected. 

Proof: This follows from the fact that,  for k _< n, 

~, + 
0 -= Hk(Pn-IX ,  PaX; Z ) - ~ H k ( ( P n - I X )  , (PAX)+; Z). 

3.2 LEMMA: For ft ~ 2, F is (n - 1)-connected. 

Proof." F is at least (n - 2)-connected because K(IrnX, rt) and O are (n - 1)- 

connected. We must show that  ~rn-1F -- 0 as well. First of all, we have an 

epimorphism 7rnO ~ lrn-lF. So 7rn_lF is abelian, and the Hurewicz map 

r c n _ I F - ~ H n - I F  is an isomorphism even for n -- 2. Next, by applying the 
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Serre spectral sequence to the fibration APeX ~ APn- IX ,  we see that H a - i F  
is a 1-acyclic G-module. Furthermore, the commutative diagram 

7r~_iD@ ~ Try_iF 

~rn_,a(PnX) + > ~r~-IAPnX 

tells us that C acts trivially on the image of lrn_lF ~ 7~n-lAPnX. But the 

class of 0-acyclic modules is closed under quotients by Proposition 2.12. So this 

image is trivial, and we have an epimorphism 0: 7~nAPn-IX --~ 7m-iF. On the 

other hand, d acts trivially on nkAPn- IX  for k > n, because we have isomor- 

phisms 7rk~(Pn_lX) + ~->7fkAPn-lX in the H-central fibration ~t(P~_IX) + -+ 

AP~_IX -+ P~-IX.  Now 0 is a morphism of G-modules, implying that G acts 

trivially on the 1-acyclic G-module Ir~_lF. Therefore 7m-iF = 0, as claimed. 
| 

Thus we have established the first part of Theorem A. We now turn to diagram 

(UCE) of the Theorem and its properties: 

The bot tom row comes from the fibration F --+ K(~nX, n) --+ ~, using Lemma 

3.2. The terms 7~n+1~ and 71"n(I) a r e  trivial G-modules and 7r~+1~ is contained in 

the center of ~n F.  Further, 7rnF "~ HnF is seen to be a 1-acyclic G-module, by 

using the Serre spectral sequence of the fibration F --+ APnX -+ AP~_IX. Thus 

N := im(7~nF -+ 7rnX) =- I[G].TrnX = im(tt) is the maximal perfect submodule 

of ~uX; see Theorem D(i). From Theorem 2.10 we see that  7rn+lO ~-~ ~rnF --~ N 

is the universal central extension of N. So the vertical arrows on the left are iso- 

morphisms by Theorem D(ii). The vertical arrow on the right is an isomorphism 

by the Five Lemma. 

As to 7~n+l-P', it is a trivial G-module because it fits into the exact sequence 

7Cn+2APn-IX ~ 7rn+lF "-+ ~n+lAPnX, where d acts trivially on the outside 

terms. The Hurewicz map 7r~+lF ~ Ha+iF is onto and is a G-module map. 

Thus d acts trivially on H~+IF as well. Now the Serre spectral sequence yields 

an isomorphism 

H2(G; I | 7cnX ) ~ >H0(G; Hn+I F) -~ Hn+I F, 

which proves the claim, and completes the proof of Theorem A. | 

3.3 Remark: By chasing the diagram of homotopy groups coming from the fibra- 

tion diagram (FD) one can deduce further that the maximal perfect submodule 
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of 7r~X is always contained in ker(Tr~PnX --+ 7rn(PnX)+). Moreover, the two 

modules are equal exactly when 7rn+l(PnX) + ~ 7rn+l(Pn_lX) + is onto. | 

4. The acyclic Postnikov tower of  A X  

Already in the early 1970's Dror showed how to use the acyclic Postnikov tower 

[3] to analyze an acyclic space Z. The acyclic Postnikov n-stage of Z is simply 

the acyclization APnZ of the usual Postnikov section. The acyclic Postnikov 

n-stage need not have trivial homotopy groups above dimension n. Instead, the 

only requirement is that the fundamental group act trivially on these higher 

homotopy groups. 

When passing from an (n-1)-s tage  Zn-1 to an n-stage, one splices into ~r. Zn- I  

a 1-acyclic IrlZ-module an, and there is a corresponding "acyclic Postnikov in- 

variant" an E H~+I(Zn-1; M). In addition, in dimensions greater than n, one 

splices into 7r.Zn_l certain zrlZ-modules with trivial action. 

In general, starting with an arbitrary space X, Dror's acyclic Postnikov tower 

of A X  has APnAX as its n-th acyclic Postnikov stage. In Theorem A, we were 

working with a tower whose n-th stage is APnX. Below, we establish explicitly 

a natural equivalence between these towers. With the aid of Theorem A, we 

express the acyclic Postnikov invariants of A X  in terms of the ordinary Postnikov 

invariants of X. 

4.1 LEMMA: Let X be a connected CW-space. Applying successively the appro- 

priate functors to the map A X  --+ X yields the commutative cube 

APnAX �9 PnAX -..% -..... 
APnX , P 

APn- I A X  

APn_I X 

1 
�9 Pn- IAX 

-..... 

X 

�9 Pn- IX  

whose left hand face is a homotopy equivalence of acyclic Postnikov towers. 

Proof'. To see that each un is a homotopy equivalence, we argue as follows. 
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Applying A to the commutative diagram 

A X  > X A A X  ) A X  

1 1 1 1 
PnAX �9 PnX APnAX ~ APnX 

For k < n, the right hand square induces 7rk-isomorphisms because the maps on 

the top and the sides do. This follows from Lemma 3.2. By [3, 3.4], un is a 

homotopy equivalence. | 

4.2 COROLLARY: The functors APnA and APn are naturally equivalent. 

In order to determine the acyclic Postnikov invariants of AX,  we require the 

following cohomological recognition tool for acyclic spaces: 

4.3 LEMMA: A connected CW-space X is acydic if and only if its fundamental 

group G is 2-acyclic and, for every G-module M, the morphism #: I | M -+ M 
induces isomorphisms 

r p,:  H~(X; I | M)---V-+H (X; M) for r >_ 2. 

Proof.'. If X is aeyclic, then G is 2-acyclic; see [3, 4.1]. To see that # ,  is an 

isomorphism, we split the sequence (MS) up into short exact sequences 

H I ( G ; M ) ~ I |  and P M ~ M - ~ H o ( G ; M ) ,  

where P M  denotes the maximal perfect submodule of M; see Theorem D. We 

then get coefficient sequences of the form 

H" (X;H1 (G;M))-+Hr(X;IQc, M) 

H "-1 (X;Ho(G;M)) 

�9 H r ( X ; P M )  

�9 H ' ( X ; P M )  

�9 H"+I(X;HI(G;M))  

) H"(X;M)-+Hr(X;Ho(G;M))  

The coefficient map #,  appears as a composite in the middle of the diagram. If 

X is acyclic, then the end terms of both rows are 0. So tt, is an isomorphism. 

Now suppose G is 2-acyclic and #,  is an isomorphism for all M and 7" > 

2. With M = ZIG] we have Hi(G;  M) = 0 and, consequently, isomorphisms 
r H r ( X ; I ) - - ~ H  (X;PM)  for all r > 2. So H'~(X;PM)--~---+H~(X;Z[G]) are iso- 

morphisms for r > 2 as well. We have HL(X;Z)  = H I ( G ; Z )  = 0. But then 

Hr(X; Z) = 0 for r _> 1. So X is acyclic. | 
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4.4 PROPOSITION: Let X be a connected CW-space with n-th k-invariant kn 
in Hn+l(Pn_lX; 7fnX ). Then the n-th acyclic k-invariant of A X  (see [3]) is 

l t - l  OCn_l(kn): 

C - - 1  

Hn+l(pn_lX;  7rnX) "-~ Hn+I(APn_IX; 7 f n X ) - ~ H n + l ( A P n _ l X ;  I | ~rnX). 

Here on_l: A P ~ _ I X  -+ P n - I X  is the colocalizing map, G is ~rxAX, I is the 

augmentation ideal of Z[G], and #-1 is the coefficient isomorphism of Lemma 

4.3. 

Sketch of Proo~ Consider the fibration Y --+ A P n - I X  obtained from the pro- 

posed acyclic k-invariant. There is a morphism of fibrations ~: A P n X  --+ Y over 

A P n - I X .  With the methods supplied in the previous discussion it is possible to 

show that 

(1) 7rr~ is an isomorphism for 1 < r < n; 

(2) 7rr(AY -+ Y)  is an isomorphism for 1 < r < n; 

(3) the unique lift f :  A P n X  --+ A Y  of ~ is a weak homotopy equivalence. 

This implies the claim. | 

4.5 Remark: In many situations our work can be used to clarify the effect on 

homotopy groups of plus constructions and localizations with respect to more 

general homology theories h. For example, let h be connective. Note first that 

X --4 X h (the h-homology localization of X) factors through X -+ X +. If X + is 

simply connected, then the canonical map X +h --+ X h is a homotopy equivalence; 

see [9, 1.7]. Now X --+ X +h agrees with X --+ X +Ha for a suitable ring R of the 

form Zp o r  ~]~peP Z/p,  where P is a set of primes; see [1, 1.1] and compare [12, 

Sect. 4]. 

Consequently, the four localization maps 

X ---+ X h, X ---y X +h, X --+ X HR, X ~ X +Ha 

all agree and factor as X ~ >X + v >(x+)HR. The map 7r,v is completely under- 
stood by [2], and here we provide new information on lr, u. 
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